Skip to content

New contentThe CHPC has a new page summarizing machine learning and artifical intelligence resources.

Center for High Performance Computing

Research Computing and Data Support for the University Community

 

In addition to deploying and operating high-performance computational resources and providing advanced user support and training, CHPC serves as an expert team to broadly support the increasingly diverse research computing and data needs on campus. These needs include support for big data, big data movement, data analytics, security, virtual machines, Windows science application servers, protected environments for data mining and analysis of protected health information, advanced networking, and more.

If you are new to the CHPC, the best place to learn about CHPC resources and policies is our Getting Started page.

Have a question? Please check our Frequently Asked Questions page and contact us if you require assistance or have further questions or concerns.

Announcing the Upcoming Retirements of Julia Harrison and Anita M. Orendt
Julia Harrison
Julia Harrison

After nearly four decades of dedicated service at the University of Utah, Julia Harrison is retiring as the Operations Director of the Center for High Performance Computing.

Read more
Anita M. Orendt
Anita M. Orendt

Anita M. Orendt is a dedicated educator and researcher with a rich background in physical chemistry. Anita has made significant contributions to the academic community at the University of Utah.

Read more
Upcoming Events:

CHPC PE DOWNTIME: Partial Protected Environment Downtime  -- Oct 24-25, 2023

Posted October 18th, 2023


CHPC INFORMATION: MATLAB and Ansys updates

Posted September 22, 2023


CHPC SECURITY REMINDER

Posted September 8th, 2023

CHPC is reaching out to remind our users of their responsibility to understand what the software being used is doing, especially software that you download, install, or compile yourself. Read More...

News History...

Cluster dendrogram for Inga species with AU/BP values (%) using Ward D

Using CHPC resources to calculate chemical similarity of species of tropical trees

By Gordon Younkin

 Department of Biology, University of Utah

We have developed a metric to quantify the similarity of defensive compounds (secondary metabolites) among different species of plants. The goal is to address fundamental questions in the ecology of tropical forests: What is the origin of the extremely high diversity? How is the exceedingly high local diversity maintained? Our hypothesis is that the answers have to do with the interactions of plants with their herbivores, with particular importance ascribed to the chemical defenses of plants. Here, we report on how we used CHPC resources to quantify the chemical similarity among species of plants.

Using ultra performance liquid chromatography-mass spectrometry (UPLC-MS), we examined the chemical profiles of 166 species of Inga, a genus of tropical trees. Among these species, we have recorded nearly 5000 distinct compounds, most of which are of unknown structure. Based on the abundance of these compounds in each species, we can calculate the overall chemical similarity of each species pair. While each individual calculation is not all that resource-intensive, we have multiple individuals for each species for a total of 795 individuals. Pairwise comparisons between all individuals requires 316,410 separate similarity calculations, a task much too large for a desktop computer. We have parallelized these calculations on a CHPC cluster, where the calculations finish in a matter of hours.

System Status

General Environment

last update: 2024-11-20 15:31:02
General Nodes
system cores % util.
kingspeak 942/952 98.95%
notchpeak 2940/3212 91.53%
lonepeak 1875/1932 97.05%
Owner/Restricted Nodes
system cores % util.
ash Status Unavailable
notchpeak 17124/22004 77.82%
kingspeak 2506/5244 47.79%
lonepeak 72/416 17.31%

Protected Environment

last update: 2024-11-20 15:30:04
General Nodes
system cores % util.
redwood 548/628 87.26%
Owner/Restricted Nodes
system cores % util.
redwood 2717/6444 42.16%


Cluster Utilization

Last Updated: 11/4/24