
Introduction to Linux (Part 3)

-- Shell Scripting

Zhiyu (Drew) Li & Ashley Dederich

Research Consulting & Faculty Engagement

Center for High Performance Computing

{zhiyu.li; ashley.dederich}@utah.edu

Linux Virtual Machine

❑Get a temporary account (or use your own CHPC account)

❑ Virtual Machine FastX portal: https://linuxclass.chpc.utah.edu:3300

❑ Open a XFCE Terminal

❑ Adjust Font size: Edit → Preferences → Appearance → Click on Font → adjust
Font Size

❑ Use Bash shell (quick check: echo $SHELL)

❑ Copy and Paste issue on Mac

https://linuxclass.chpc.utah.edu:3300/

Getting the exercise files

cd ~

wget https://home.chpc.utah.edu/~u0424091/LinuxScripting2.tar.gz

tar -xvfz LinuxScripting2.tar.gz

cd LinuxScripting2

What is a shell script?

• A script is a series of shell commands stored in a file

• A script can be executed in several ways:
– bash scriptname.sh

– ./scriptname.sh (if the script file executable, rwx r-x r-x)

– scriptname.sh (if the script is on your $PATH
environment variable)

• commands are separated by:
– new line
– semi colon “;”

• Commands executed sequentially until
– the end of the file has been reached

– an error happens

– the “exit” command is executed

Scenarios for scripting

• Using the batch system at CHPC (discussed in the talk

on Slurm Basics)

• Automating pre- and post- processing of datasets

• Performing lots of menial, soul draining tasks efficiently

and quickly

• Preserve/share operations

Exercise 1: Write a first script
Create a file named my_ex1.sh using nano.
First line always contains ‘#!’ followed by the language interpreter.
(“shebang”)
#!/bin/bash

echo "My first script:"

echo "My user name is:"

whoami

MSG1="I am in the directory:"

echo $MSG1

pwd

MSG2="Today's date:"

echo $MSG2

date

echo "End of my first script."

Run the script:
bash my_ex1.sh

Or make the script executable first. Run this command:

chmod +x ./my_ex1.sh
Then run your script:

./my_ex1.sh

User-defined Variables

Script Arguments
Command line arguments to a script are available in the script as

$1, $2, and so on.
For example, if a script is named “myscript.sh” and the script is

executed with “./myscript.sh value1 value2 value3”:

• the pre-defined internal variable $1 has the value “value1”

• the variable $2 has the value “value2”

• the variable $3 has the value “value3”

• $0 contains the name of the script
• $# contains the # arguments
• $* contains all arguments

Try it out
1) Create a new script “test_args.sh”

2) chmod +x test_args.sh

3) ./test_args.sha b c

#!/bin/bash

echo "script name: $0"

echo "how many arguments: $#"

echo "list all arguments: $*"

echo "arg1: $1"

echo "arg2: $2"

echo "arg3: $3"

echo "done"

Re-cap: Different Variables

Environmental Variables:

eg $HOME, $PATH

Internal Variables in Bash Script:

eg $0, $1, $2, $*, $#

User-defined Variables:

MY_VAR=“this is my first var!”

echo $MY_VAR

Saving results of a command

to a user-defined Variable

• The output of a command can be put directly

into a variable with the backtick: `

• The backtick is not the same as a single quote:

Backtick: ̀ Single quote: ‘

• For example: (no spaces around = sign)
VAR=`wc - l $FILENAME`

• You can also do t h i s :

VAR=$(wc - l $FILENAME)

String replacement

#!/b in /bash

IN =“myfi l e . in”

#changes myf i le . in t o myf i le .out

OUT=${IN/. in/ .out}

./my_program $IN > $OUT

A neat trick for changing the name of your output file is to use

string replacement to mangle the filename.

• In bash, ${VAR/search/replace} is all that is

needed.

• You can use the sed, awk, or tr commands for more

powerful manipulations.

Exercise 2.0

Write a script (my_ex2.sh) that takes a file name as an
argument, searches that file for exclamation points with grep,
puts all the lines with exclamation marks “!” into a new file
named “outfile”, and then counts the number of lines in
outfile. Use “histan-qe.out” (output file of a Materials
Science software) as your test file.

Don’t forget #!/bin/bash

Variables - Bash style: VAR="string" (no spaces!)

Arguments - $1 $2 $3 . . .

Grep - grep 's t r i n g ' filename

Counting Lines - wc – l filename

Solution to Exercise 2.0

#!/bin/bash

INPUT=$1

grep "!" $INPUT > outfile

cat outfile | wc -l

The output from your script should have been “34”.

Script my_ex2.sh

Dates and Times
• Date strings are easy to generate in Linux

– “date” command gives the date,

Fri Sep 8 09:59:02 MDT 2023

but not nicely formatted for filenames

– “date --help” will give format options (use +)

• date +"Today is: %D"

• date +%r

“Today is 05/31/18”

”10:51:17 AM”

• date +%Y-%m-%d_%H-%M-%S_%N

"2014-09-15_17-27-32_864468693"

Exercise 2.1

Modify your previous script so that instead of writing to an
output file with a fixed name, the output filename is derived
from the input file (e.g., ‘XXXX.out” becomes
“XXXX.todays_date”). Don’t forget to copy your script in case
you make a mistake!

Command execution to string - VAR=̀command̀ (use the
backtick) or VAR=$(command)

Bash replacement – ${VAR/search/replace}

Dates - date +%Y-%m-%d_%H-%M-%S_%N (or pick your own
format)

Solution to Exercise 2.1

#!/bin /bash

INPUT=$1

DATE=`date +%Y-%m-%d_%H-%M-%S_%Ǹ

OUT=${INPUT/out/$DATE}

grep "!" $INPUT > $OUT

wc - l $OUT

Every time you run the script, a new unique output file

should have been generated.

Conditionals (If statements)
#!/bin/bash

VAR1="name"

VAR2="notname"

if ["$VAR1" == "$VAR2"]

then

echo "VAR1 and VAR2 have the same value."

else

echo "VAR1 and VAR2 have different values."

fi

if [-d "$VAR1"] then

echo "$VAR1 is a directory!"

else

echo "$VAR1 is not a directory!"

fi

• The operators ==, !=, <, >, &&, | |and a few others work.

• The “else” clause is optional.

• You can test variable values and file properties.

• See the manual page with “man test” for all the options.

Conditionals (File properties)

Test bash

Is a directory - d

If file exists - a , - e

Is a regular file (like .txt) - f

Readable - r

Writeable - w

Executable - x

Is owned by user - O

Is owned by group - G

Is a symbolic link - h, - L

If the string given is zero length - z

If the string is length is non-zero - n

-The last two flags are useful for determining if an environment variable exists.
-The rwx flags only apply to the user who is running the test.

Loops (for statements)
#!/bin/bash

f o r i i n 1 2 3 4 5
do

echo $ i

done
f o r i i n * . i n

do

touch $ { i / . i n / . o u t }

done

f o r i i n `c at f i l e s `

do

grep "s t r i ng " $ i >> l i s t
done

• Loops can be executed in a script --or-- on the command line.

• All loops respond to the wildcard operators *,?,[a-z], and {1,2}

• The output of a command can be used as a for loop input.

• There are also while and until loops.

Exercise 2.2
Run the script called ex2.sh. This will generate a directory "ex2" with 100 directories and
files with different permissions. Write a script (my_ex22.sh) that examines all the
directories and files in "ex2" using conditionals and for loops. For each iteration of the
loop:

1. Test if the item is a directory. If it is, delete it.
2. If the file is not a directory, check to see if it is executable.

A. If it is, then change the permissions so the file is not executable.

B. If the file is not executable, change it so that it is executable and rename
it so that it has a ".script" extension.

3. After all the files have been modified, execute all the scripts in the directory.

For loops : for VAR in *; do ... done

If statements : if [condition]; then ... else ... fi Useful

property flags - -x for executable, -d for directory

-You can reset the directory by re-running the script ex2.sh

-Make sure that you do not write your script in the ex2 directory, or it will be deleted!

Solution to Exercise 2.2 (my_ex22.sh)

#!/bin/bash

for i in ex2/*
do

if [-d $i]
then

rm -rf $i
else

if [-x $i]
then

chmod -x $i
else

chmod +x $i
mv $i $i.script

fi
fi

done
for i in ex2/*.script
do

./$i
done

Basic Math

#!/bin/bash

i n i t i a l i z a t io n
i=1
#increment

i= $((i++))

#addit i on, subt ract ion

i= $((i + 2 - 1))

#mu l t i p l i cat ion , di v i s ion

i= $((i * 10 / 3))

#modulus
i= $((i % 10))

#not math, echo returns " i+1 "
i= i+1

• Bash uses $(()) for arithmetic operations.

• Important! This only works for integer math. If you need more,

use Python, R, etc.

Bash “Strict” Mode

• Some bash settings simplify debugging:
s e t - e # E x i t i m me d i a t e l y on any command returns errors

s e t - u

s e t –o fa il

E r r o r i f r e f e r e n c i n g u n d e f i n e d v a r i a b l e

E r r o r on any p i p e command

E xam ple : t h i s co de s h o u l d f a i l :

p a t t e r n = “ s o m e s t r i n g $ so m e _u n d e f i n e d_ v ar ia b le ”

g r e p $ p a t t e r n n o n _ e x i s t e n t _ f i l e | wc - l

• You can do this all at once (put after shebang):
set -euo pipefail

• SeeAaron Maxwell’s blog:
– http://redsymbol.net/articles/unofficial-bash-strict-mode/

• Also helpful is ”bash –x yourscript.sh” or “set –x”: prints
each line before execution

http://redsymbol.net/articles/unofficial-bash-strict-mode/

More on scripting techniques
• Create functions
my_func() {

echo “Today is $1”

}

my_func “Friday”

my_func “a big day!”

• Single quotes ‘ ’ V.S. Double quotes “ ”
MY_VAR=1

echo "The value is $MY_VAR" #Expand variable into value: The value is 1

echo ‘The value is $MY_VAR’ #Preserve literal string: The value is $MY_VAR

• Redirect the standard error
command # Output (stdout) and Error (stderr) printed on Screen

command > out.txt # Save Output to a file; Error printed on Screen

command 2> error.txt # Save Error to a file; Output printed on Screen

command > out.txt 2>error.txt # Save output and Error to different files

command &> logs.txt (or command > logs.txt 2>&1) # Save both to same file

Thank You

helpdesk@chpc.utah.edu

mailto:helpdesk@chpc.utah.edu

	Slide 1: Introduction to Linux (Part 3) -- Shell Scripting
	Slide 2: Linux Virtual Machine
	Slide 3: Getting the exercise files
	Slide 4: What is a shell script?
	Slide 5: Scenarios for scripting
	Slide 6: Exercise 1: Write a first script
	Slide 7: Script Arguments
	Slide 8: Try it out
	Slide 9: Saving results of a command to a user-defined Variable
	Slide 10: String replacement
	Slide 11: Exercise 2.0
	Slide 12: Solution to Exercise 2.0
	Slide 13: Dates and Times
	Slide 14: Exercise 2.1
	Slide 15: Solution to Exercise 2.1
	Slide 16: Conditionals (If statements)
	Slide 17: Conditionals (File properties)
	Slide 18: Loops (for statements)
	Slide 19: Exercise 2.2
	Slide 20: Solution to Exercise 2.2 (my_ex22.sh)
	Slide 21: Basic Math
	Slide 22: Bash “Strict” Mode
	Slide 23: More on scripting techniques
	Slide 24: Thank You

